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We introduce a single patch collocation method in order to compute solutions of initial
value problems of partial differential equations whose spatial domains are 3-spheres.
Besides the main ideas, we discuss issues related to our implementation and analyze
numerical test applications. Our main interest lies in cosmological solutions of Einstein’s
field equations. Motivated by this, we also elaborate on problems of our approach for gen-
eral tensorial evolution equations when certain symmetries are assumed. We restrict to
U(1)- and Gowdy symmetry here.
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1. Introduction

Numerical studies of initial value problems of partial differential equations on certain spatial domains have a long history
both in basic research and in applied science, see for instance [6] and references therein. In particular, for applications in
geometrical classical theories in physics, as for instance general relativity, Maxwell theory, but also Ricci flow (introduced
e.g. in [39]), there are interesting applications where the spatial domain is a 3-sphere. In general relativity, spatial S

3-topol-
ogy plays a particularly important role for the standard model of cosmology based on the spatially homogeneous and iso-
tropic Friedmann–Robertson–Walker solutions (see for instance [22,40]). Beyond those simple and, at least for certain
matter fields, well-understood models with high symmetry, there exist several outstanding open problems; of particular
outstanding interest and motivation for this work here are the strong cosmic censorship and BKL conjecture in Gowdy vac-
uum solutions of Einstein’s field equations for spatial S3- or S1 � S2-topologies [21,25,9,18,4,36].

It is not straight forward to deal with ‘‘non-trivial” spatial topologies, such as S3, numerically. Recall the well-known
problems occurring at the coordinate axis in the case of standard cylindrical coordinates ðq;/; zÞ in R3. These coordinates
degenerate at the ‘‘axis” given by q ¼ 0. In typical equations, this has the consequence that derivatives with respect to
the azimuthal angle / always come together with a factor 1=q. If f is a smooth function on R3, then a term like 1=q@/f is
well-behaved at the axis. However, when an equation with such terms is solved numerically, the ‘‘formal singularity” 1=q
can cause numerical instabilities. Applications with axial symmetry have a great history in all over science. Just to name
examples of numerical studies of axisymmetric problems in general relativity, we list [19,8,34]. In this paper, we will not
be interested in axial symmetry, however, it is instructive to keep it in mind for the following reason. Let us assume that
we cover a dense subset of S3 with one coordinate patch, for instance the Euler coordinates introduced below. Then it turns
out that this leads, loosely speaking, to two ‘‘axes” on S

3, each of which with similar properties as the axis for cylindrical
coordinates on R3. Hence, we call this the ‘‘axis problem” also in the case of spatial S3-topology.

Alternatively to this approach with one singular coordinate patch on the spatial domain, one can try a multipatch tech-
nique. The idea is to cover the spatial domain with several local regular coordinate patches. In general relativity, examples of
. All rights reserved.
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implementations of the multipatch technique are [38,11]; of particular interest for our work here are implementations based
on spectral methods in [32,35,12]. In any case, the multipatch technique does not seem advantageous for the applications
which we have in mind. First, its implementation is difficult, since one must find a stable and efficient way of guaranteeing
the necessary communication between the local patches. Second, we are interested in cosmological solutions with symme-
tries, and in order to take full advantage of those, it is often a good idea to adapt the coordinates to the symmetries, even
though this can mean that one has to deal with singular coordinate systems. We have decided to develop a single patch code
based on the collocation method1 for the spatial discretization. It is general experience that such methods typically yield high
accuracy [6]. Furthermore, a spectral single patch approach seems very natural from our geometric point of view, which we
introduce in this paper. For the time discretization, we use the method of lines with a Runge Kutta integrator. Such a discret-
ization technique for various spatial domains has a long history in computational physics, see for instance the references and
examples in [6]. An alternative approach, which uses spectral discretization both in space and in time, has been reported on in
[23]. However, to our knowledge, the case of spatial S3-topology has not been studied yet.

Our aim is to find numerical solutions of systems of first order quasi-linear evolution PDEs, written schematically as
1 In t
@t f ðt; xÞ þ
X

i

ðAiðf ; t; xÞ � riÞf ðt; xÞ þ Bðt; x; f Þ ¼ 0: ð1Þ
Here, the unknown f is a vector, the terms B are vector valued, and Ai and ri represent a collection of matrices and spatial
derivative operators, as explained in more detail later. The spatial domain, represented by the abstract coordinates x, is S3.
We assume in the following, without further notice, that the initial value problem for such a system is well-posed, i.e. that for
any choice of initial data in a given regularity class, there exists a unique solution f locally in time, which depends contin-
uously on the initial data in a well-defined manner. In our applications, ignoring the ‘‘axis problem” above for the moment,
the operators ri can be thought of as the spatial partial derivatives, the quantities Ai as symmetric matrices, and all coeffi-
cients depend smoothly on their arguments. In this case, the system is symmetric hyperbolic, and well-posedness follows
[26,28]. In particular, when the initial data is smooth, then the solution is smooth until it breaks down. We remark, that
in principle our approach applies to other forms of hyperbolicity for Eq. (1), or even parabolic systems.

We will often use the following equivalent geometric language. Namely, we say that we look for solutions of Eq. (1) on
R� S

3, where time t is interpreted as the canonical coordinate on the factor R of the manifold R� S
3, and the t ¼ const-

hypersurfaces have S3-topology. In this paper, we will often be concerned with the case when f in Eq. (1) represents com-
ponents of smooth tensor fields. Then we call Eq. (1) ‘‘tensorial equation”.

This paper is organized as follows: Section 2 is devoted to the description and discussion of our numerical technique. We
show our geometric point of view which leads, in a natural way, to a single patch collocation discretization in space. We
demonstrate that it allows a straight forward treatment of the ‘‘axis problem” mentioned above. Since we are interested,
in particular, in tensorial equations, we discuss several related issues in Section 2.3. Namely, in order to express the tensor
fields as collections of smooth functions we have decided to work with smooth global frames on S3. The formulation of ten-
sorial equations in terms of smooth global frames on S

3 leads to certain problems in the presence of symmetries. Two par-
ticular classes of symmetries of our interest are discussed. For these sections, but indeed at many places of this paper, some
background in differential geometry would be helpful, which can be obtained for instance from [22,29]. In Section 2.4, we
elaborate on our numerical infrastructure in general, and we discuss certain issues related to numerical stability which
are present for spatial S

3-topology. In Section 3, we proceed as follows. First, we introduce the mathematical and physical
background of our test application. Then we test the code in that setting and elaborate on numerical errors, stability and
performance. Finally, in Section 4, we summarize and conclude. We comment briefly on possible problems when some of
our special assumptions are dropped, point to open issues and list aspects for future work.

2. Geometric ideas and numerical implementation

2.1. Euler coordinates and the Euler map

In the following, we consider the 3-sphere S3 as the submanifold of R4 given by
S
3 :¼ ðx1; x2; x3; x4Þ 2 R4

X4

i¼1

x2
i ¼ 1

�����
( )

: ð2Þ
The Euler coordinates of S3, also appearing as Euler angle parametrization, etc. in the literature, is the coordinate patch given
by
x1 ¼ cos
v
2

cos k1; x2 ¼ cos
v
2

sin k1;

x3 ¼ sin
v
2

cos k2; x4 ¼ sin
v
2

sin k2

ð3aÞ
his paper, we will often speak sloppily of spectral or pseudospectral methods when we mean the collocation method.
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in terms of the coordinate functions v 2 ½0;p�; k1; k2 2 ½0;2p½. We will rather use the coordinates fv;q1;q2g determined by
k1 ¼ ðq1 þ q2Þ=2; k2 ¼ ðq1 � q2Þ=2: ð3bÞ
The Euler coordinates smoothly cover the dense subset of S
3 given, when the points v ¼ 0;p are taken away. We ex-

pect that other choices of coordinates with similar properties are also appropriate. Although the motivation for choos-
ing the Euler coordinates stems from Gowdy symmetry, as becomes clearer later, they are robust enough for more
general cases.

Certainly, the relations in Eq. (3) are well-defined for all v;q1;q2 2 R. This is also true when we consider
v;q1;q2 2 ðR mod 4pÞ. Geometrically, the Euler coordinates given by Eq. (3) can thus be interpreted as a smooth map from
the 3-torus
T3 :¼ ðR mod 4pÞ � ðR mod 4pÞ � ðR mod 4pÞ
to S
3, which we call the Euler map
U : T3 ! S3;

ðv;q1;q2Þ# cos
v
2

cos
q1 þ q2

2
; cos

v
2

sin
q1 þ q2

2
; sin

v
2

cos
q1 � q2

2
; sin

v
2

sin
q1 � q2

2

� �
2 S3:

ð4Þ
The Euler map U is even a diffeomorphism when we restrict it to e.g. v 2�0;p½ and restrict the image correspondingly. But at
the points v ¼ 0;p, the inverse is not well-defined. Note, that in the whole paper we will often make the canonical identi-
fication of the isomorphic groups Uð1Þ;S1; ðR mod 2pÞ and ðR mod 4pÞ, and henceforth not distinguish between them.
However at this point, our definition of the map requires to stand on 4p-periodicity at least for the coordinate v, but we
come to the standard 2p-periodicity in a moment.

Let f be a smooth function on S3. In the following we consider ~f :¼ f �U, where U is the Euler map defined in Eq. (4).
Hence ~f is a smooth function on T3. For simplicity, we write f instead of ~f , and often make no difference between the ‘‘original
function f on S3” and the ‘‘corresponding function ~f on T3”. If necessary, in order to avoid confusions, we sometimes say that
‘‘f is a smooth function on T3 originating in a smooth function on S

3”.
Motivated by this simple geometric relation given by the Euler map, our approach is the following one; the details are

worked out in the subsequent sections. Our aim is to solve partial differential equations with a spatial domain S
3. Let us

suppose that all coefficient functions and unknown functions, which we want to solve for, in the equation are smooth func-
tions on S

3. Furthermore, suppose that all derivative operators stem from smooth globally defined vector fields on S
3. Since

U becomes a diffeomorphism, when we restrict it to a dense subset of S3, all these functions and vector fields correspond in a
unique manner to smooth functions and vector fields on the corresponding subset of T3. Hence, we can solve the equation as
if it its spatial domain were T3. However, because U is not a diffeomorphism globally, we have introduced formal singular-
ities to the equations, analogous to the singularities at the axis of cylindrical coordinates on R3 discussed above. One main
conclusion in the following sections is that the hypothesis, that all these quantities on T3 originate in smooth quantities on
S3, allow to regularize the formally singular behavior at those points. By all this, we will successfully make ‘‘S3 periodic in all
three spatial directions”, and can henceforth use spectral methods based on the standard Fourier basis for the spatial discret-
ization of the equations.

In all of what follows, we will assume, for simplicity, that all functions involved do not depend on the coordinate q2. We
call such functions U(1)-symmetric, and later we interpret this symmetry geometrically. The generalization of the following
ideas is, however, straight forward. This assumption has the following nice property. Let f be a smooth U(1)-symmetric func-
tion on S3. Then f �U is 2p-periodic (instead of 4p-periodic) in v and q1. This is so, because we can use the symmetry in q2 to
switch the signs of all terms in Eq. (4) consistently as needed. Hence, in the following, we only need to deal with the standard
2p-periodicity.

Note, that analogous spectral approaches for equations with spatial domains diffeomorphic to S
2 have been implemented

before, see for instance [2,6] and references therein.

2.2. Analysis of Fourier series of given smooth functions on S3

Let f be a given smooth U(1)-symmetric function on S3. The corresponding function f on T3 is smooth, and hence has a
representation in terms of a Fourier series. We come back to the question of convergence of such a series later. At this stage,
we want to assume that this Fourier series is finite, and, without loss of generality, with N summands both in v and q1. Since f
is U(1)-symmetric function, it is 2p-periodic in both v and q1, as argued before. Let f be real valued. Then it must be of the
form
f ðv;q1Þ ¼ F0ðvÞ þ 2 Re
XN

p¼1

FpðvÞeipq1 : ð5Þ
Here, F0ðvÞ is a real valued function, and FpðvÞ is allowed to be complex for all p P 1. In [3], we demonstrated that the prop-
erties of the Euler map under U(1)-symmetry implies
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FpðvÞ ¼
2
PN
n¼1

fn;p cos nvþ f0;p for p P 0 even;

�2i
PN
n¼1

fn;p sin nv for p > 0 odd

8>>><>>>: ð6aÞ
for some, in general, complex coefficients fn;p; only the coefficients for p ¼ 0 must be real. Some of the factors in these expres-
sions are chosen for later convenience. Note, that in [3], the coordinates ðv;q1;q2Þ are defined slightly differently. For exam-
ple, the function v here must be substituted by 2v to compare to the expressions in [3]. In any case, we further find that for
even p > 0, there are the ‘‘compatibility conditions”
f0;p þ 2
XN

n¼1

f2n;p ¼ 0;
XN

n¼1

f2n�1;p ¼ 0: ð6bÞ
These originate in the fact that the functions FpðvÞmust vanish at the degenerated places v ¼ 0;p for all p > 0. For odd p,
this is implied by the expression Eq. (6a) automatically, and hence there are no compatibility conditions. The corresponding
expressions are more complicated, but analogous, when we give up U(1)-symmetry.

Now, we want to study what happens to the Fourier series of f, when it is differentiated along a smooth tangent vector
field on S3. By this, we mean that the abstract derivative operator ri in Eq. (1) is of the form rif ¼ Va@xa f for a smooth tan-
gent vector field V ¼ Va@xa on S

3. Here, our convention is that xa represents three abstract spatial coordinates, which neither
need be the Cartesian coordinates, nor the Euler coordinates used before. However, we will restrict to Euler coordinates in
the following. Furthermore, we assume Einstein’s summation convention. The coefficients Va are just functions on S

3 which
are not necessarily smooth when we consider the Euler coordinates. Of particular importance will be the following tangent
vector fields, whose origin we explain later and which, with respect to the Euler coordinates, take the form
Y1 ¼ 2 sin q1@v þ 2 cos q1ðcotv@q1
� cscv@q2

Þ; ð7aÞ
Y2 ¼ 2 cos q1@v � 2 sinq1ðcotv@q1

� cscv@q2
Þ; ð7bÞ

Y3 ¼ 2@q1
: ð7cÞ
The factors 2 are chosen for consistency with our discussion in [3]. Now, as we explain later, any smooth vector field V on S3

can be written as a linear combination V ¼ VaYa with V1;V2;V3 smooth functions on S
3. Hence, under the assumption that

all differential operators in the equations stem from smooth vector fields on S3, it follows for U(1)-symmetry, that all ‘‘for-
mally singular” differential operators in our equations must be of the form �Fðv;q1Þ cotv@q1

, with F some smooth function
on S3. Without the assumption of U(1)-symmetry, there can additionally be singular operators of the form
ðFðv;q1;q2Þ= sinvÞ@q2

. This shows that the formally singular terms here are of the same type as in the ‘‘axis problem”.
The differences to the case of cylindrical coordinates on R3 are twofold. First, in the case of S3, we have two such ‘‘axes”
simultaneously at v ¼ 0 and p. Second, the axis itself is not topologically a line here, but a closed circle. In the following,
we restrict our attention to the operator relevant to U(1)-symmetry � cot v@q1

.
So, let f be as before, and g :¼ @q1

f . Since g is again a smooth U(1)-symmetric function on S
3 with finite Fourier series, the

analogue of Eqs. (5) and (6) holds with FpðvÞ substituted schematically by the function GpðvÞ. Then, for v – 0;p, we get,
� cot vGpðvÞ ¼
2 c2;p sin vþ

PN
k¼1
fðbk;p þ bkþ1;pÞ sin 2kvþ ðckþ1;p þ ckþ2;pÞ sinð2kþ 1Þvg

� �
for p > 0 even;

2i b1;p þ
PN
r¼1
fðcr;p þ crþ1;pÞ cosð2r � 1Þvþ ðbr;p þ brþ1;pÞ cos 2rvg

� �
for p > 0 odd:

8>>><>>>: ð8aÞ
Here, we define
bN
r;p :¼

XN

n¼r

g2n;p; cr;p :¼
XN

n¼r

g2n�1;p for r P 1: ð8bÞ
The computations leading to this result are described in [3]. This result means that, as soon as the Fourier coefficients of @q1
f

are known, the Fourier coefficients of the complete ‘‘formally singular term” � cotv@q1
f can be computed.

Now, let us consider the general case of a given smooth U(1)-symmetric function f on S
3. The associated function on T3

has an infinite Fourier representation in a general, with rapidly decreasing coefficients fn;p. This is a standard result from Fou-
rier analysis, which can be found in [37,7]. This last property means that the modules of the Fourier coefficients is bounded
by a uniform constant times any negative integer power of the two summation indices n and p. This property is often re-
ferred to as ‘‘exponential convergence”. It is a general fact under our conditions that the Fourier series converges pointwise
absolutely and even uniformly. We find straight forwardly that the Fourier series of f must be of the form given by Eq. (6),
setting N !1. The infinite series of the compatibility condition Eq. (6b) converges because the coefficients are rapidly
decreasing.

Now consider the inverse question. Let a function be given on T3, of the form of Eqs. (5) and (6), for N ¼ 1 with rapidly
decreasing coefficients fn;p. The standard theory implies that the series converges pointwise absolutely and uniformly to a
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smooth function f on T3. However, does f originate in a smooth function on S3? In general the answer is no, because the
compatibility conditions Eq. (6b) are just necessary, but not sufficient for smoothness. Indeed, it is sufficient that for any
p, the function FpðvÞ is a smooth 2p-periodic function on R, which has a zero of order p at v ¼ 0 and p. In particular, each
function FpðvÞeipq1 then originates in a smooth function on S

3. The argument for proving that this implies that f is a smooth
function on S3, uses the theorem about Fourier series on S3 in [37]. Namely one can show that under these assumptions, f as
a function on S

3 can be represented as an infinite series of spin-weighted spherical harmonics with again rapidly decreasing
coefficients.

Consider the derivative g ¼ @q1
f . In particular, the formula for � cot vg in Eq. (8) also holds in the limit N !1, and the

series expressions there converge at least pointwise at all v – 0;p. The function � cotv@q1
f is a smooth function on T3 be-

cause each FpðvÞ in Eq. (5) is a smooth 2p-periodic function in v with appropriate zeros at the ‘‘singular places” v ¼ 0;p. This
is a nice result because it shows that Eq. (8) is meaningful at the singular locations, and hence allows to evaluate the formally
singular term� cotv@q1

f explicitly there, even in the limit N !1. However, we remark that� cotv@q1
f does not originate in

a smooth function on S
3, because Eq. (8) is not consistent with Eq. (6). This is not a problem because the formally singular

operator is only a part of a differential operator defined by a smooth vector field on S3. Indeed, the result, when this ‘‘full”
differential operator is applied to a smooth function, yields a smooth function on S

3.

2.3. Symmetry and related issues for tensorial equations

Before we discuss, how these results can be applied in practice, let us first consider some consequences for tensorial
equations.

2.3.1. Smooth frames on S3

Recall, that one of our main assumptions is that, at any given instance of time, all unknowns and coefficients in the equa-
tions are smooth functions, and that all differential operators are determined by smooth globally defined vector fields on S3.
However, in order to turn tensorial equations into partial differential equations for smooth scalar functions, we need to intro-
duce smooth frames on S3. We would like to mention that an alternative way of treating tensorial equations on S3 in the
case of Gowdy symmetry, see below, can be found in [18] for the case of spatial S

1 � S
2-topology.

Let us recall some well-known facts. Let S3 be given as in Eq. (2). Assume the standard matrix representation of the Lie
group SU(2) [37]. The map
W : S
3 ! SUð2Þ; ðx1; x2; x3; x4Þ#

x1 þ ix2 �x3 þ ix4

x3 þ ix4 x1 � ix2

� �

is a diffeomorphism, which can be used to transport the group structure of SU(2) to S

3. Hence, both SU(2) and S
3 can be

considered as identical Lie groups via the map W. Thus, from the standard SU(2) group multiplication, we can define left
and right translation maps,
L;R : S
3 � S

3 ! S
3; ðu;vÞ# LuðvÞ :¼ uv ; ðu;vÞ# RuðvÞ :¼ vu;
so that Lu and Ru are diffeomorphisms S
3 ! S

3 for each point u 2 S
3. Those maps can be employed to construct smooth glo-

bal frames. First one chooses a basis of the tangent space at the unit element e of the group. We choose the Pauli matrices
with non-standard normalization
eY 1 ¼
0 i

i 0

� �
; eY 2 ¼

0 �1
1 0

� �
; eY 3 ¼

i 0
0 �i

� �
;

considered as elements of TeðSUð2ÞÞ. Then, one uses the push forward of Lu or Ru to transport this basis smoothly to any other
point u 2 SUð2Þ
ðYaÞu :¼ ðLuÞ�ðeY aÞ; ðZaÞu :¼ ðRuÞ�ðeY aÞ:
Clearly, fYag is SU(2)-left invariant while fZag is SU(2)-right invariant and both are smooth global frame fields on S3. It is
straight forward to check that they satisfy
½Ya; Yb� ¼ 2
X3

c¼1

�abcYc; ½Za; Zb� ¼ 2
X3

c¼1

�abcZc; ½Ya; Zb� ¼ 0; ð9Þ
where �abc is the totally antisymmetric symbol with �123 ¼ 1. Here, the brackets denote the Lie bracket. For fYag, we have
already written the explicit expressions with respect to the Euler coordinates in Eq. (7). For fZag, we have
Z1 ¼ �2 sinq2@v � 2 cos q2ðcotv@q1
� csc v@q2

Þ; ð10aÞ
Z2 ¼ 2 cos q2@v � 2 sin q2ðcot v@q1

� cscv@q2
Þ; ð10bÞ

Z3 ¼ 2@q2
: ð10cÞ
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On R� S3 with a time function t, we assume that each t ¼ const-hypersurface is diffeomorphic to S3 with Euler coordi-
nates fv;q1;q2g. Hence, on each of these surfaces, the expressions Eqs. (7) and (10) define the fields fYag and fZag. Geomet-
rically, we thus have for all a ¼ 1;2;3
½@t; Ya� ¼ ½@t ; Za� ¼ 0:
Now we write an arbitrary globally defined smooth frame feig on R� S3 as follows. By feig we mean the collection of 4
frame fields fe0; e1; e2; e3g. We set
e0 ¼ @t; ð11aÞ
and write,
ea ¼ ea
bYb; ð11bÞ
where ea
b

	 

is a smooth 3� 3-matrix valued function with non-vanishing determinant on S3. Our conventions for frames is

that the index 0 always corresponds to the ‘‘time frame vector” e0 and a; b; . . . ¼ 1;2;3 correspond to the ‘‘spatial frame vec-
tors”. When we write indices i; j; . . . ¼ 0; . . . ;3, we mean both the time and spatial frame vectors. For a tensor field S, say for
example a covariant 2-tensor, we write Sij :¼ Sðei; ejÞ; Sab :¼ Sðea; ebÞ, etc. We stress, that it is important to understand, that
writing ei, does not mean the ith component of a vector e, but rather the ith vector field of the frame feig.

2.3.2. Symmetry reductions of tensorial equations
Let S be an arbitrary smooth tensor field on R� S

3. We say that S is n-invariant, provided LnS ¼ 0 everywhere. Here Ln

denotes the Lie derivative along n. The coefficients Sij of S, with respect to an arbitrary frame feig, are constant along n, if, and
in general only if, ½n; ei� ¼ 0. Now, suppose that the functions Sij of such a tensor are among the unknowns of the system of
partial differential equations which we would like to solve. Often, we would like to exploit the symmetry of the unknowns
and reduce the equations to some simpler form. If the unknown functions are constant along n, such a reduction can be done
directly, if n has the meaning of a spatial coordinate vector field. Hence, in the following, we will be interested in frames such
that ½n; ei� ¼ 0; in this case, we say that the frame is n-invariant.

Let us consider special cases of interest for us. We have already introduced the notion of U(1)-symmetry for functions
before. For general smooth tensor fields S on R� S

3, we define it by the requirement that S is Z3-invariant. One can define
U(1)-symmetry more geometrically, but for the purpose of this paper, our definition is sufficient. The integral curves of
Z3 ¼ @q2

are circles. Hence the symmetry group is isomorphic to U(1), which motivates the name. Now, it is straight forward
to construct Z3-invariant frames feig. Namely, for the ansatz Eq. (11), this requirement is equivalent to
@q2
ea

b
	 


¼ 0;
due to Eq. (9). The consequence is, that both the frame matrix ea
b

	 

and the frame components of all tensor fields, which are

Z3-invariant, are constant along q2, and hence are U(1)-symmetric functions. Provided, our equations are formulated with
respect to functions with this property only, the spatial domain reduces to that of the coordinates fv;q1g. We refer to this
as the 2 + 1-reduced equations.

Another symmetry assumption of interest is Gowdy symmetry with two spatial symmetry vector fields. We say, that a
tensor field is Gowdy symmetric, if it is U(1)-symmetric and additionally Y3-invariant. Again, this definition can be made
more geometric. In any case, let us suppose that a frame field feig, obeying Eq. (11) and ½Z3; ei� ¼ 0, is given as before.
Now, it turns out, as argued in [3], that the assumption that feig is a smooth globally defined Z3-invariant frame on S3, does
not allow that it is Y3-invariant in addition. Hence, although we can find a frame such that the frame components of arbitrary
Gowdy symmetric tensor fields are constant along q2, it is not possible to achieve that in addition they are constant along q1;
recall Y3 ¼ @q1

. Thus, even if we assumed Gowdy symmetry, the spatial domain of our equations would not reduce directly to
that of the coordinate v, i.e. not to 1 + 1 dimensions. This difficulty is a consequence of our assumption that the frame is
smooth globally on the manifold; if we allowed the frame to become singular at some places, then the situation would
be different. However, we would get other problems due to the additional singularities.

Nevertheless, even under these assumptions, it is possible to perform the following ‘‘indirect” reduction of the equations
to 1 + 1 dimensions in the case of Gowdy symmetry. For the frame components of any smooth tensor field S, for example in
the case of a covariant 2-tensor, which is Y3-invariant, we find
Y3ðSijÞ ¼ Si0 jTi
i0 þ Sij0Tj

j0 ð12Þ

with
Ti
i0ei0 :¼ ½Y3; ei�:
Under our assumptions for the frame Eq. (11), we see that
T0
i0 ¼ 0; Ti

0 ¼ 0:
For the spatial components, one has
Ta
a0 ¼ Y3 ea

c
	 


fc
a0 þ 2ed

c�3c
dfd

a0 :
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The matrix ðfc
aÞ is defined here as the inverse of the matrix ðea

cÞ. As soon as we fix the transport of the frame in time, we
can compute the time derivative of the matrix ðTa

a0 Þ; we do this for a particular example in Section 3.1. In general, we can
expect that these evolution equations for the matrix ðTa

a0 Þ are non-trivial. In any case, the idea for the ‘‘indirect” reduction to
1 + 1 in the Gowdy case is the following: first, substitute the Y3-derivatives of all tensor field components in the equations by
means of Eq. (12). Second, append the evolution equations for the matrix ðTa

a0 Þ to the system of equations and, third, evaluate
the equations only at q1 ¼ 0. Then, with respect to the Euler coordinates, all unknowns only depend on t and v, and the evo-
lution system is closed. Note, however, that it depends on the properties of the evolution equations of ðTa

a0 Þ, whether the
resulting system of evolution equations yields a well-posed initial value problem. In the example, which we discuss later,
this is the case.

We remark that under the assumption of U(1)-symmetry, all results obtained here also hold for spatial S
1 � S

2-topology.
We do not elaborate on this further; a discussion is given in [5].

2.4. Numerical implementation

2.4.1. Discretization and our numerical infrastructure
In order to compute approximate solutions of our system of partial differential equations Eq. (1) by means of a computer,

we need to discretize the equations and the unknowns. Our analysis before based on Fourier series suggests spectral discret-
ization [7,6] in space with the standard trigonometric basis. We follow most of the conventions in [6]. In order to keep the
presentation as short as possible here, we do not write down formulas wherever we follow the standard conventions. In par-
ticular, we use the collocation method. For the spatial grid in any of the spatial dimensions, referred to as x, we set
xk ¼ ðkþ lÞ2p
N
; k ¼ 0; . . . ;N � 1; ð13Þ
where N is the number of grid points in the chosen spatial direction. The quantity l 2 ½0;1½ is a shift quantity. For the stan-
dard collocation method which we use, the quantity N must be odd.

For simplicity we use the so-called partial summation algorithm [6] for computing the discrete Fourier transforms (DFT)
so far; however, we plan to switch to the Fast Fourier Transform algorithm (FFT) [10,33], in order to optimize performance
for high spatial resolutions.

This discretization of the equations and unknowns in space yields a system of ordinary differential equation (ODE) in time
for the spectral coefficients of the unknowns, or equivalently for the values of all unknown functions at the spatial grid
points. This system of ODEs is called the semi-discrete system. In order to solve this numerically, one must discretize time
as well. For this, we have implemented a couple of Runge Kutta (RK) variations described in [33]; namely, first, the non-adap-
tive 4th order RK scheme, second, the 4th order ‘‘double-step-adaption” RK scheme and, third, the adaptive 5th order
‘‘embedded” RK scheme. For those schemes, the time adaption is always ‘‘global in space”, namely, at a given time the max-
imal estimated error at all spatial points is taken. The parameter g is the desired accuracy, according to Eq. (16.2.7) in [33],
where it is called D0. The lower its value, the stronger is the tendency of the adaption scheme to decrease the time step h. For
practical reasons, we also define a minimal time step hmin, so that the adaption scheme is prevented from reaching unprac-
tically small values of h.

A sophisticated discussion of errors and convergence in such discretization approaches is given in [7]. We will not elab-
orate on this, in general, very complicated problem analytically. Instead, we will investigate errors and convergence in our
test applications empirically in Section 3.2. The positive experience, which people have gathered over many years of research
with the collocation method, is summarized in Boyd’s empirical ‘‘assumption of equal errors” [6], which we decided to rely
on in our numerical work.

It is clear that many classes of problems require adaptive techniques for the spatial resolution. One particular effect for
underresolved numerical solutions obtained by the collocation method is aliasing. We have not yet implemented any of the
explicit antialiasing recipes, given for instance in [6]. Instead, we use the following simple global spatial adaption technique
so far. At each time step of the numerical evolution, the program computes the Fourier transform of one representative un-
known function; which one is chosen requires some experiments. In our applications, where symmetry implies that only one
spatial direction is significant, it is then sufficient to do the following. From the spectral coefficients of this unknown, the
code determines the ‘‘power” of the upper third of the frequency spectrum with respect to the significant spatial direction,
divided by the total power. It is straight forward to generalized this to more general situations. By ‘‘power” we mean the sum
over the squares of the modulus of the Fourier coefficients. We call the result of this computation the ‘‘adaption norm”
NormðadaptÞ. Besides adaption itself, this ‘‘norm” can also be thought of as a measure for the aliasing error. When, during
the numerical evolution, NormðadaptÞ exceeds a prescribed threshold value, the code stops automatically, interpolates all
quantities to a higher spatial resolution and continues the run. In each of these adaption steps, we have found it to be rea-
sonable to almost double the spatial resolution. In any case, note that this is a primitive adaption method, since it is ‘‘global
in space”. In particular, for solutions, which develop sharp localized features, a local adaption method in space would be
more desirable. This is a future work project. However, even Gowdy spikes have been treated with our much simpler method
in [3].

Let us, furthermore, mention the possibility of the Intel Fortran compiler [24] on Intel CPUs, which we have worked on
exclusively up to now, to switch from the standard machine supported number representation called ‘‘double precision”
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with round-off errors of the order 10�16 to software emulated ‘‘quad precision” with round-off errors of the order 10�32. In-
deed, this possibility is exploited in our applications, as is discussed later.

2.4.2. Practical issues for spatial S
3-topology

In this paper, we discuss two codes for spatial S3-topology which both use the infrastructure above, but with slight dif-
ferences. For one of the codes, we assume U(1)-symmetry with a choice of orthonormal frame reducing the equations to two
spatial dimensions; we call this code the 2 + 1-code. For the other code, which we call 1 + 1-code, we assume Gowdy sym-
metry, and suppose that the indirect reduction to one spatial dimension described before leads to a well-posed initial value
formulation. The particular equations which we implement and study in both cases are discussed in Section 3.1.

In order to apply the results, which we obtained for the properties of Fourier series of smooth U(1)-symmetric functions
on S3 in Section 2.2 in our discretization approach, we assume that for any choice of resolution, the solution of the corre-
sponding discretized equations originates in smooth functions on S3. Let us suppose, that our evolution equations have
the property, that if the initial data of the continuum problem is smooth, then the corresponding solution of the continuum
equations is smooth. For instance, this is the case for symmetric hyperbolic systems. Then, if the initial data is approximated
by functions, which originate in smooth functions on S

3, and, if all our assumptions about the coefficients and derivative
operators in the equations before hold, then the solution of the discretized originates in smooth functions on S3 for any res-
olution. This is at least true, as far as we can neglect errors caused by aliasing and the finite number representation in our
computer. Let us assume just for a moment, that these errors can be neglected. In particular, Eq. (8) can be applied to the
2 + 1-code directly. For the 1 + 1-code, we need one further observation, since the equations are only evaluated at q1 ¼ 0,
and hence there is no information about even and odd Fourier modes with respect to q1. Namely, due to Eq. (6a), all coef-
ficients associated with cos-modes with respect to v must correspond to an even mode with respect to q1. Analogously, all
coefficients associated with sin-modes with respect to v must correspond to an odd mode with respect to q1. This informa-
tion is sufficient to use Eq. (8) as in the 2 + 1-case. Now, for even p > 0, there are two ways of computing the coefficients bN

r;p

and cN
r;p of the formally singular terms. Namely, due to the compatibility conditions Eq. (6b), we can write both
2 Thi
bN
r;p ¼

XN=2

n¼r

gN
2n;p ¼ �

1
2

gN
0;p �

Xr�1

n¼1

gN
2n;p; cN

r;p ¼
XN=2

n¼r

gN
2n�1;p ¼ �

Xr�1

n¼1

gN
2n�1;p:
For odd p, there is only one way of writing these coefficients. Although each pair is equivalent in exact computations, there
can be a difference numerically. We refer to the first way of computing these coefficients as ‘‘up-to-down”, since we need the
information of all high frequencies to compute the low frequency coefficients recursively. The second variant is called
‘‘down-to-up”, since the information from low frequency coefficients is used to compute the high frequency coefficients
recursively.

A priori, both ways have the potential to amplify numerical instabilities. In particular, although the solution originates in
smooth functions on S3 at one time of the evolution, this together with round-off errors and aliasing can cause a drift, so that
the form given by Eq. (6) are violated eventually. We have not yet built the special structure of the Fourier series into our
numerical infrastructure. Thus, it is possible, that such errors accumulate, such that, after some time of evolution, the numer-
ical solution does not represent a smooth solution on S

3 anymore. Indeed, we found in our numerical experiments with the
2 + 1-code in [3], that, without precautions, the numerical solution typically drifts away strongly for both the up-to-down
and down-to-up method. We were not able to pin-point the problem. However, for the down-to-up method, it turns out
to be sufficient, after each time step, to set all those Fourier coefficients to zero explicitly, which are supposed to vanish
according to Eq. (6a). With this manipulation, the numerical evolution becomes stable. In particular, Eq. (6b) stays satisfied
within reasonable error limits, and the code is convergent and able to reproduce explicitly known solutions. The up-to-down
method, however, we were not able to stabilize.

We can expect that similar practical issues exist for the 1 + 1-code. Here, however, we must proceed slightly differently,
since the form given by Eq. (6) cannot be enforced explicitly. In order to control the smoothness of the numerical solution
nevertheless, the idea is to control the unknowns directly at the coordinate singularities v ¼ 0;p in terms of ‘‘boundary con-
ditions”.2 Let the frame feig be Z3-invariant as before, and let S be one of the unknown Z3-invariant tensor fields. Since Y3 ¼ �Z3

on the symmetry axes, one obtains Y3ðSijÞ ¼ 0 there. Exploiting this information by means of Eq. (12), implies a homogeneous
linear algebraic ‘‘boundary system”, which yields the ‘‘boundary conditions” for S
Si0jTi
i0 þ Sij0Tj

j0 ¼ 0 at v ¼ 0;p:
For our particular test case later, we solve the boundary system in Section 3.1.3. Let us assume for the moment that we
have solved this system. In general, we would like to have the possibility of either letting the numerical evolution proceed
freely and just monitoring, how well those boundary conditions are satisfied, or, if necessary, we would like to enforce the
boundary conditions. The latter means that we set the values of the unknowns at v ¼ 0;p explicitly to the values implied by
the boundary conditions. In order to make this possible, we modify the spectral conventions slightly as follows, so that both
boundary points v ¼ 0 and v ¼ p correspond to grid points. Let f be some unknown function, which we discretize as
s is the terminology from [18]. We use it despite the fact that there are no geometrical boundaries at v ¼ 0;p.
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f ðvÞ ¼ a0ffiffiffiffiffiffiffi
2p
p þ 1ffiffiffiffi

p
p

XðM�1Þ=2

n¼1

ðan cos nvþ bn sin nvÞ:
In the standard collocation approach, which we use for the 2 + 1-code, the number of grid points N, according to Eq. (13), is
odd, and M ¼ N. Recall that the discrete Fourier transform [6] is the linear map from the values of f at the grid points
ðf ðx0Þ; . . . ; f ðxN�1ÞÞ to the Fourier coefficients ða0; b1; a1; . . . ; bðM�1Þ=2; aðM�1Þ=2Þ, which is bijective for these choices of N and
M. This is true for any choice of shift l. For the 1 + 1-code now, we choose l ¼ 0, any even number N, and set M ¼ N þ 1.
In this case x0 ¼ 0 and xN=2 ¼ p. One finds easily that for this, the standard discrete Fourier transform is the map
ðf ðx0Þ; . . . ; f ðxN�1ÞÞ# ða0; b1; a1; . . . ; bN=2�1; aN=2�1; 0;2aN=2Þ:
Hence, the map has the standard properties except for the highest frequency. The fact, that the discrete Fourier transform
always yields zero for the highest sin-mode can be understood easily, because the value of sin nv is always zero for
n ¼ ðM � 1Þ=2 at v ¼ k 2p

N . The main point is now that this map is nevertheless invertible. For spectral differentiation, we
ignore the frequency n ¼ ðM þ 1Þ=2 completely. In practice, it is expected that this is not problematic, since the highest fre-
quencies are typically insignificant. Now, in our numerical experiments, which have so far restricted to the down-to-up
method, we find that the 1 + 1-code with this spectral infrastructure is very stable and convergent. This is true even without
enforcing the boundary conditions at all and hence without any explicit control of the smoothness in regimes where the
solution is relatively smooth. Recall that this is not so for the 2 + 1-code. Furthermore, the violations in the boundary con-
ditions typically converge to zero with increasing resolution. However, if the simulation approaches a non-smooth regime of
the solution, it seems often necessary to enforce the boundary conditions; this is discussed for our test applications.

3. Analysis of test applications

Before we test and analyze our numerical method in Section 3.2, we briefly introduce some background for our test appli-
cation in Section 3.1. More details can be found in our similar discussion in [4], where we emphasize the physical and math-
ematical ideas and interpret the results.

3.1. Background of the test application

3.1.1. Physical and mathematical background
Our aim is to compute cosmological solutions of Einstein’s theory of relativity; in particular we are interested in the

strong cosmic censorship conjecture in Gowdy vacuum solutions of Einstein’s field equations for spatial S
3- or S

1 � S
2-

topologies [21,25,9,18,4,36]. All our discussions assume vacuum and a cosmological constant k, so that Einstein’s field equa-
tions (EFE) in geometric units c ¼ 1;G ¼ 1=ð8pÞ read
eR ¼ k~g: ð14Þ
Here ~glm is the spacetime metric, which is the fundamental unknown encoding the information about the gravitational field.
Its Ricci tensor eR [22] is a 2nd order quasi-linear expression in the metric. We will always assume four spacetime dimen-
sions, that the signature of the metric is Lorentzian (�,+,+,+), and that Cauchy surfaces, i.e. the ‘‘surfaces of constant time”,
are diffeomorphic to S3. Furthermore, we suppose k > 0.

In [30,31], Penrose introduced his notion of conformal compactifications. The idea is to rescale the physical metric ~g by
means of a conformal factor X, which is a smooth strictly positive function on the spacetime manifold eM . This yields the so
called conformal metric
g :¼ X2~g:
Now, loosely speaking, if it is possible to attach those points to eM , which are the limit points of vanishing X, so that the new
manifold M is smooth and the metric g can be extended as a smooth metric on M, then we say that the original spacetime has
a smooth conformal compactification. The references above, but in particular [15], give further necessary technical require-
ments to make this loose statement rigorous. Under those conditions, the set X ¼ 0 is a smooth surface in M, called confor-
mal boundary J . Physically it represent ‘‘infinity”. In [15], it is shown, that conformal boundaries must be spacelike
hypersurfaces with respect to the conformal metric for all solutions of Eq. (14) with k > 0. One calls such solutions ‘‘future
asymptotically de-Sitter” (FAdS) [13,1], if its conformal boundary has a smooth non-empty future component J þ; there is
the analogous concept for the past time direction. In particular, the de-Sitter solution [22] is FAdS. Under these conditions,
Jþ represents the infinite timelike future of eM . Some of the asymptotic geometric properties of FAdS solutions are discussed
in [3].

Friedrich introduced his conformal field equations (CFE), as reviewed for instance in [15], in order to deal with conformal-
ly compactified solutions of Einstein’s field equations. In these conformally invariant equations, the fundamental unknown is
the conformal metric g and the conformal factor X related to the physical metric ~g. The non-trivial property of these equa-
tions is, that they are, first, equivalent to Einstein’s field equations wherever X > 0, and, second, yield regular hyperbolic evo-
lution equations even where X ¼ 0. Under the assumptions above, the CFE allow us to formulate what we call ‘‘J þ-Cauchy
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problem” [13]. The idea is to prescribe data for the CFE on the hypersurface Jþ, including its manifold structure, subject to
certain constraints implied by the CFE. These data can then be integrated into the past by means of evolution equations im-
plied by the CFE. Friedrich proved that the Jþ-Cauchy problem is well-posed, and that the unique FAdS solution correspond-
ing to a given choice of smooth data on J þ is smooth, as long as it can be extended into the past. It is remarkable that this
Cauchy problem allows to control the future asymptotics of the solutions explicitly by the choice of the data on J þ. Concern-
ing the past behavior of the solution corresponding to a given choice of data on J þ, however, there is only limited under-
standing and a-priori control, because of the complexity of the field equations. In this paper, we will give no details on
the constraints on J þ, and say only briefly what the relevant initial data components are, since we do not want to introduce
all necessary geometric concepts now. However, we write down a special class of solutions of the constraints in Section 3.1.2.
We refer to [13,3], where the details have been carried out.

We decided to use the so-called general conformal field equations, which are the CFE in conformal Gauss gauge [14,15]. In
our applications, we specialize the gauge even further to what we call Levi–Civita conformal Gauss gauge [3]. In this paper
here, we will discuss neither the physical properties, nor the possibly bad implications of this choice of gauge, but just refer
to [3,4]. In any case, assuming, without loss of generality, k ¼ 3, and having fixed the residual gauge initial data, as described
in [3], the implied set of evolution equations is
@tea
c ¼� va

beb
c; ð15aÞ

@tvab ¼� va
cvcb �XEab þ Lab; ð15bÞ

@tC
b

a c ¼� va
dC b

d c þXBad2b d
c ; ð15cÞ

@tLab ¼� @tXEab � va
cLcb; ð15dÞ

@tEfe � Dec B
a f2ac

e
	 
 ¼� 2vc

cEfe þ 3vðecEf Þc � vc
bEb

cgef ; ð15eÞ

@tBfe þ Dec E
a f2ac

e
	 
 ¼� 2vc

cBfe þ 3vðecBf Þc � vc
bBb

cgef ; ð15fÞ

XðtÞ ¼1
2

tð2� tÞ; ð15gÞ
for the unknowns
u ¼ ea
b;vab;C

b
a c; Lab; Efe;Bfe

� �
: ð15hÞ
The unknowns are the spatial components ea
b of a smooth frame field feig as in Eq. (11b), with e0 ¼ @t , which is orthonormal

with respect to the conformal metric, the spatial frame components of the second fundamental form vab of the t ¼ const-
hypersurfaces with respect to e0, the spatial connection coefficients C b

a c , given by C b
a ceb ¼ rea ec � vace0 where r is the

Levi–Civita covariant derivative operator of the conformal metric, the spatial frame components of the Schouton tensor
Lab, which is related to the Ricci tensor of the conformal metric by
Lij ¼ Rij=2� gijg
klRkl=12;
and the spatial frame components of the electric and magnetic parts of the rescaled conformal Weyl tensor Eab and Bab

[15,16], defined with respect to e0. In this special conformal Gauss gauge, the timelike frame field e0 is hypersurface orthog-
onal, i.e. ðvabÞ is a symmetric matrix. In order to avoid confusions, we point out that, in principle, the conformal factor X is
part of the unknowns in Friedrich’s formulation of the CFE. However, for vacuum with arbitrary k, it is possible to integrate
its evolution equation in any conformal Gauss gauge explicitly [14], so that X takes the explicit form Eq. (15f) in our gauge.
We note, furthermore, that, since ðEabÞ and ðBabÞ are tracefree by definition, we can get rid of one of the components for each
of the two. Our simple minded choice is the 33-component by E33 ¼ �E11 � E22; the same for the magnetic part. The evolu-
tion equations Eqs. (15d) and (15e) of Eab and Bab are derived from the Bianchi system [15]. In our gauge, the constraint equa-
tions implied by the Bianchi system take the form
Dec Ec
e � �ab

eBdavb
d ¼ 0; Dec Bc

e þ �ab
eEdavb

d ¼ 0: ð16Þ
Here, �abc is the totally antisymmetric symbol with �123 ¼ 1, and indices are shifted by means of the conformal metric. The
other constraints of the full system above are equally important, but are ignored for the presentation here. Further discus-
sions of that evolution system and the quantities involved can be found in the references above. Note that in Eqs. (15d), (15e)
and (16), the fields feag are henceforth considered as differential operators, using Eq. (11b) and writing the fields fYag as
differential operators in the Euler coordinate basis as in Eq. (7). Seen as a system of partial differential equations, the system
Eq. (15) is symmetric hyperbolic, and hence the initial value problem is well-posed.

Note that in this gauge, our initial hypersurface Jþ corresponds to t ¼ 0. The past conformal boundary, if it exists, cor-
responds to t ¼ 2. Hence, our time coordinate runs backwards with respect to physical time.

These equations hold without any symmetry assumptions. In the following we will assume that all unknown fields in-
volved are Gowdy symmetric. For the 1 + 1-code, we need to derive the evolution equations of the matrix Ta

a0
	 


. The fact that
the conformal metric g is Y3-invariant, implies, after straight forward computations, that the matrix ðTabÞ :¼ Ta

a0ga0b

	 

is anti-

symmetric. Our choice of frame transport is parallel transport with respect to the conformal metric. This implies, after some
algebra, that
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@t Ta
a0

	 

¼ 0:
Hence, since the original system of equations is symmetric hyperbolic, also the ‘‘indirect reduction” to 1 + 1-dimensions is
symmetric hyperbolic. So, the initial value problem for these equations is also well-posed.

3.1.2. A class of initial data
As initial data on Jþ, we use the ‘‘Berger data”, which are solutions of the constraints derived for U(1)- and Gowdy sym-

metry in [3]. Those data are close to data of the k-Taub-NUT solutions and hence are particularly interesting for the strong
cosmic censorship conjecture [4]. Here, we restrict to Gowdy symmetry. Under the conventions above, these data take the
form
ea
b

	 

¼ diagð1;1; a3Þ; ð17aÞ

ðvabÞ ¼ diagð�1;�1;�1Þ; ð17bÞ
C 1

1 2 ¼ 0; C 2
1 3 ¼ �1=a3; C 1

2 2 ¼ 0; C 1
2 3 ¼ 1=a3; ð17cÞ

C 2
2 3 ¼ 0; C 1

3 2 ¼ 1=a3 � 2a3; C 1
3 3 ¼ 0; C 2

3 3 ¼ 0; ð17dÞ
ðLabÞ ¼ diag 5� 3=a2

3

	 

=2; 5� 3=a2

3

	 

=2; �3þ 5=a2

3

	 

=2

	 

; ð17eÞ

ðBabÞ ¼ diag �4 1� a2
3

	 

=a3

3;�4 1� a2
3

	 

=a3

3;8 1� a2
3

	 

=a3

3

	 

; ð17fÞ

ðEabÞ ¼
E0 þ C2w20 0 �

ffiffiffi
2
p

a3C2 Re w21

0 E0 þ C2w20 �
ffiffiffi
2
p

a3C2 Im w21

�
ffiffiffi
2
p

a3C2 Re w21 �
ffiffiffi
2
p

a3C2 Im w21 �2ðE0 þ C2w20Þ

0B@
1CA: ð17gÞ
The induced conformal 3-metric of Jþ is a Berger sphere with a free parameter a3 > 0. The only inhomogeneous, i.e. space
dependent part of the initial data is given by the components Eab. For our definition of the functions wnp, consult [3]; we just
note that, with respect to the Euler coordinates, we have
w20 ¼ cosv; w21 ¼ sin ve�iq1=
ffiffiffi
2
p

:

For all these data, one finds
Ta
a0

	 

¼

0 2 0
�2 0 0
0 0 0

0B@
1CA:
In total this family of solutions of the constraints has three free parameters a3 > 0; E0 2 R and C2 2 R. We remark that the
reason for the strange names of these parameters is consistency with our notation in [3].

3.1.3. Boundary control for the 1 + 1-code
In Section 2.4.2, we have motivated our boundary control approach for the 1 + 1-code. Because the analysis depends

strongly on the particular equations and choice of frame transport, it was not possible to give a further discussion there
in full generality. Hence, let us continue here for our special choice of equations and frame transport. Due to what was said
before, we have
Ta
a0

	 

¼

0 2 0
�2 0 0
0 0 0

0B@
1CA
for all t, for our choice of initial data. In this case, we say, that the frame is ‘‘boundary adapted”. Now, we introduce the new
fields
E�11 :¼ ðE11 þ E22Þ=2; E�22 :¼ ðE11 � E22Þ=2; ð18Þ
and similar for the magnetic part Bab, so that the boundary system, introduced in Section 2.4.2, yields the following condi-
tions at v ¼ 0 and v ¼ p,
E12 ¼ E13 ¼ E�22 ¼ E23 ¼ 0; B12 ¼ B13 ¼ B�22 ¼ B23 ¼ 0; ð19Þ
whereas E�11 and B�11 are free. For all other symmetric invariant 2-tensor fields, for instance the 2nd fundamental form, we get
analogous relations, but, in addition, the 33-components are free, if the tensor is not tracefree. Since the behavior of the con-
nection coefficients C b

a c can be derived on the symmetry axes as well, which are the only non-tensorial objects in our set of
unknowns, we obtain a complete set of boundary conditions for all the unknowns. The quantity NormðBCÞ is now defined as
the sum of the actual absolute numerical boundary values of all those unknowns, which are supposed to be zero there
according to these results. Monitoring NormðBCÞ in a numerical computation, yields information on how well the boundary
conditions are satisfied.
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In order to implement the 1 + 1-code numerically, we write the unknowns in terms of the new electric and magnetic
fields defined in Eq. (18). Actually, it would be better to introduce the analogous combinations of fields for the other un-
knowns, but this has not yet been done. Hence, so far, the code lacks a clean way of enforcing e.g. the boundary condition
v11 � v22 ¼ 0 at v ¼ 0 and p. To circumvent this problem temporarily, we have decided to work with a ‘‘partial enforcement”
scheme, which, at a given time of the evolution, enforces all boundary conditions except for those of this type. In addition, we
monitor the quantity NormðBCÞ, and so far this treatment has turned out to be sufficient.

3.2. Numerical results for the test application

In [3], we have performed a couple of tests with the 2 + 1-code, discussed the findings and drew conclusions about the
numerical method. Here, we rather focus on the 1 + 1-code, and show so far unpublished tests and discussions in Section
3.2.1. Afterwards in Section 3.2.2, we also compare a simulation done with the 2 + 1-code and the 1 + 1-code directly.

We just note that we have not made systematic investigations of the CFL condition for our codes yet.

3.2.1. Analysis of computations with the 1 + 1-code
For our numerical test case here, we choose a3 ¼ 0:7;C2 ¼ 0:1 and E0 ¼ 0 in Eq. (17) as initial data parameters, corre-

sponding to the ‘‘large inhomogeneity case” in [3] and to one of the simulations presented in [4]. The associated solution
turns out to develop a singularity, and hence can be seen as an interesting test case for our code. The evolution of a spatial
norm of the curvature invariant called Kretschmann scalar is shown in Fig. 1. All the results we show here were done without
the automatic spatial adaption approach described in Section 2.4.1, because, in order to study convergence, it seems more
useful to control and adapt the spatial resolution manually. The adaption norm, computed with respect to E13, was used only
for estimating the aliasing error. The time integration was done with the adaptive 5th order embedded RK scheme with con-
trol parameters g and hmin as discussed in Section 2.4.1. For these runs, we decided to use the ‘‘partial enforcement” scheme
of the boundary conditions, explained in Section 3.1.3. All runs were done with double precision.

The constraints Eq. (16) are satisfied initially up to machine precision. However, due to numerical errors, those con-
straints typically become violated more and more with increasing evolution time. Let us define NormðconstrÞ as the L1-norm
of the sum of the absolute values of each of the six components of the left hand sides of Eq. (16) at a given instant of time, all
that divided by trðvabÞ, in order to factor out the observed collapse of the solution. Lp-norms of functions on S3 are always
evaluated here by means of their corresponding functions on T3 and the standard Lp-norm on T3. Another norm, which mea-
sures how well the numerical solution satisfies Einstein’s field equations, is
NormðeinsteinÞ :¼ kðeRij � k~gijÞ=XðtÞkL1ðS3Þ;
where the Ricci tensor eRij of the physical metric ~gij is evaluated algebraically from the conformal Schouton tensor Lij and
derivatives of the conformal factor X. The indices in this expression are defined with respect to the physical orthonormal
frame given by ~ei ¼ Xei. The norm is computed by summing over the L1-norms of each component.

Now, we will distinguish two phases of the evolution for these initial data, in which different aspects and effects are
important: the early evolution close to J þ for t between 0.0 and 0.69, and the late evolution close to the singularity, which
we find at t 	 0:69520493. In order to avoid confusions, we recall that the terms ‘‘early” and ‘‘late” are always understood
with respect to the time coordinate t, which, however, runs backwards with respect to the physical time.
Fig. 1. Evolution of curvature for the ‘‘large inhomogeneity case”.
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At early times, it is achieved easily that the spatial discretization error is not significant, until some later time when small
spatial structure starts to form more rapidly. One hint that this is true, as we do not show here, is that NormðadaptÞ is more or
less constant over a long time period, and small. Another hint is that the behaviors of NormðconstrÞ and NormðeinsteinÞ are not
strongly influenced by the spatial resolution. See Figs. 2 and 3, where N represents the number of spatial grid points, which
is constant in this early regime. Indeed, the higher N, the larger is the initial value NormðconstrÞ due to higher round-off errors
for computing spatial derivatives. This is not visible for NormðeinsteinÞ, since this quantity is defined purely algebraically in the
unknowns. In Fig. 2, we see that NormðconstrÞ grows less, the higher the time resolution is, i.e., in particular, the smaller the
parameters g and eventually also hmin are. However, we always observe at least weak approximately exponential growth. In
Fig. 3, we see a similar behavior for NormðeinsteinÞ. We do not show here that there is neither a particular growth of NormðconstrÞ,
nor of NormðeinsteinÞ, at the symmetry axes. Rather, the maximal growth takes place, where the curvature increases most
strongly. This can be seen as a confirmation that our treatment of the coordinate singularities works well, cf. [3]. Note that
there is an optimal time resolution, in the sense that, if we choose a higher resolution, the constraint error and NormðeinsteinÞ

are actually increased caused by higher round-off errors. Although we do not show any plots, we want to mention, that we
have experimented with ‘‘quad precision”. For the 1 + 1-code, this yields reasonable performance and has several conse-
quences. First, the initial data for the constraint violations are decreased by many orders of magnitude, since those are deter-
mined primarily by the precision of the numerical number representation. By choosing appropriate resolutions, we find that
the constraint violations and NormðeinsteinÞ can then be kept several orders of magnitude smaller than in the double precision
case during the whole run. However, they always show exponential growth, which suggests that this is the typical behavior
of the constraint propagation in our system of equations. Furthermore, quad precision allows us to work in a regime in which
discretization errors are much larger than round-off errors, and hence it is easier to interpret convergence tests. Fig. 4 shows
Fig. 2. Constraint violations at early times.

Fig. 3. Violations of EFE at early times.
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the behavior of NormðBCÞ. The errors at the boundaries are small and stable, despite of some weak growth, which is expected
in situations close to a singularity. In these tests, this error does not decrease for higher resolutions, which is a hint that
round-off errors have a significant effect. With quad precision, we were able to confirm that the violations of the boundary
conditions become smaller, consistent with increasing resolution.

Concerning the late evolution, the following is found. The following figures, Figs. 5–8, show a very small time neighbor-
hood of the final time, where the runs were stopped and where the solution blows up. In the runs underlying these plots, we
adapted the spatial resolution several times during the runs manually; the number N in the figures is the final spatial res-
olution in each case. Each manual spatial adaption step is visible in the plots as a jump, because for different spatial reso-
lutions, the numerical values of the norms slightly change. In all these runs, we choose g ¼ 10�13, and hence the time
steps h decrease so strongly that h ¼ hmin at that time when the runs were stopped. In this late time regime, the errors
are dominated by spatial discretization errors, because the solution has the property that spatial structures shrink without
bound. This can be seen by looking at the late time plot of the adaption norm in Fig. 5. It shows, how strongly the demand for
spatial resolution grows with time, but also, that it is possible to gain control by increasing the resolution at least temporar-
ily. However, the demand for spatial resolution increases very strongly with time, and it turns into a difficult numerical issue
to keep track of that eventually. In Fig. 6, we demonstrate, how the choice of spatial resolution influences the propagation of
the constraint violations, and that this quantity converges to a weakly exponentially growing for sufficiently high spatial res-
olutions. This is a promising result, and shows that the constraint propagation is more or less under control, as long as it is
possible to increase the resolution in practice. Fig. 7 shows the violations of the boundary conditions. They turn out to be
very small and under control for sufficiently large resolutions. The higher the final spatial resolution is, the smaller these
violations appear. Finally, in Fig. 8 we show NormðeinsteinÞ. We do not observe a very strong difference between the various
resolutions; indeed, in order to make the differences visible at all, the time axis represents an even smaller time neighbor-
Fig. 4. Violation of boundary conditions at early times.

Fig. 5. Adaption norm at late times.



Fig. 6. Constraint violations at late times.

Fig. 7. Violation of boundary conditions at late times.

Fig. 8. Violations of EFE at late times.
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hood now. It is unexpected that at very late times this norm is not necessarily smaller the higher the resolution is, and it has
to be investigated whether this is a problem.



Fig. 9. Evolution of curvature for the ‘‘regular case”.
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3.2.2. Comparison of a computation with the 2 + 1- and 1 + 1-code for a Gowdy symmetric solution
Next, we want to compare directly the numerical results obtained with the 2 + 1-code and the 1 + 1-code for a Gowdy

symmetric solution of our equations. We restrict to a singularity free case, since we do not want to be spoiled by the lack
of spatial resolution, in particular for the 2 + 1-code. The following initial data parameters are chosen: a3 ¼ 0:93; E0 ¼ 0
and C2 ¼ 0:5, which correspond to the ‘‘regular case” in [3]. The corresponding solution is smooth for all 0 6 t 6 2 and hence
develops a smooth past conformal boundary at t ¼ 2. Fig. 9 shows the evolution of the curvature invariant Kretschmann sca-
lar. We show neither convergence plots, nor the error quantities before, since the situation is very similar to the early phase
of the singular solution in the previous section. Instead, we report only on one run done with one fixed resolution: the size of
the time step is h ¼ 5 � 10�4 and the number of spatial points is N ¼ 40 for the 1 + 1-code and Nv ¼ 41;Nq1

¼ 21 for the 2 + 1-
code. We use the non-adaptive 4th order RK time integrator, and the automatic spatial adaption has been switched off here
as well.

The run with the 1 + 1-code was done without enforcing the boundary conditions now, cf. Fig. 10. We see that this error
stays very small and is stable. In order to illustrate, how well the results obtained with the 1 + 1- and the 2 + 1-code coincide,
let us define the following norm
NormðdiffÞ :¼ Eð1 þ 1Þ
11

���
v¼p

� �
� Eð2 þ 1Þ

11

���
v¼p;q1¼0

� ����� ����:

Consider Fig. 11 where this norm is plotted vs. time. We find very good agreement between the two codes. Some deviations
can be expected, since in the 2 + 1-code, Gowdy symmetry is valid only approximately; see more comments in [3]. So far, we
have made no effort to explain the oscillatory behavior in both figures, but we conjecture them to be caused by aliasing, since
Fig. 10. Violations of the boundary conditions of the 1 + 1-code.



Fig. 11. Comparison of the 2 + 1- and 1 + 1-code.
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its amplitude becomes smaller, the higher the spatial resolution is. We have also compared more variables at other grid
points and found similar results.

4. Summary and conclusions

The purpose of this paper is to introduce our numerical approach for the study of evolution equations with spatial S3-
topology. First, we have given details on a geometric point of view in order to find a natural discretization. Second, we have
discussed issues related to the implementation and, third, analyzed test applications. By all this we have demonstrated the
feasibility of this approach. Indeed, these techniques have been applied elsewhere, for instance in [3–5].

Although our main interest lies in the field of general relativity, we believe that the applicability of the method is more
general. For the presentation of this paper, we made a couple of special choices which need to be overcome in order to use
the method in more general situations. First, our analysis is based on U(1)-symmetry so far. We believe that it is straight
forward to generalize in principle. Furthermore, we decided to formulate the equations in terms of smooth global frames
on S

3. This had the consequence that only singular terms of special type are present, and with this knowledge, we were able
to work out the Fourier series of the formally singular terms explicitly in Section 2.2. However, in general, as soon as we have
a-priori knowledge about the structure of the formally singular terms in the equations, and if their type is not completely
different than ours, a similar regularization is possible. Hence, from this point of view, one should be able to modify our
method to cases, where other kinds of frames or spatial coordinates are used. In our application, we made a special choice
of coordinate gauge and frame transport. This implied that, in particular, the matrix ðTa

a0 Þ is constant in time. If the original
evolution equations imply a well-posed initial value problem, then, in this gauge, also the evolution equations for Gowdy
symmetry reduced to 1 + 1 dimensions have this property. For other gauges, however, this might not be the case. A further
issue turns up when the frame transport does not keep the orthonormal frame boundary adapted in the sense of Section
3.1.3. Then a different boundary treatment than ours might become necessary. As a last point of this certainly incomplete
list, we mention that we have not made experiments with other time integrators yet. Of particular interest might be implicit
schemes, for instance, to treat parabolic evolution equations.

We believe that our current numerical infrastructure has not yet been pushed to its limits, but is also not yet really opti-
mized for high spatial resolutions. For instance, we still do not use FFT but only the partial summation scheme. Also it may be
true, that there is a more optimal trade-off between accuracy and efficiency for other time integrators than the Runge Kutta
schemes of our choice; comments on this can be found in [6]. Furthermore, it might make sense to think about paralleliza-
tion of the code. This should be straight forward with some publicly available FFT libraries, for instance [17]. We expect, that
the 1 + 1-code, in its current form, is limited to a few thousand spatial grid points. We want to stress that this turned out to
be sufficient in our runs with T3-topology in [3]. There, we were able to reproduce ‘‘spiky features” numerically. Hence, we
are optimistic that also such difficult phenomena can be studied with our numerical infrastructure in 1 + 1 dimensions.
Dependent on the kind of the application, one may nevertheless doubt, if spectral methods are suitable at all. In general,
it is fair to say that, although these methods are highly accurate for lower resolutions, they might be too inefficient for high
resolutions. Thus it makes sense, to also investigate into other methods, for instance finite differencing methods, maybe with
multipatch [38,11,27], in order to make systematic comparison studies. Further automatic local spatial adaption, usually
called adaptive mesh refinement, would be desirable; for instance cosmological solutions with spikes have been investigated
with such techniques in [20], however not for S3-topology.

In summary, due to the results of the tests here and in [3–5], we believe that our numerical approach has promising
potentials, which have not been fully exhausted yet, for many kinds of applications with spatial S

3-topology and beyond.
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For instance, we find it particularly appealing that our infrastructure can be used directly also for problems with spatial T3-
topology and, at least for Gowdy symmetry, with S

1 � S
2-topology [5]. For the applications, which we have in mind, future

research will show, how much the method must be modified, or whether completely new approaches will become necessary,
in order to deal with probably much more severe phenomena than those present in the classes of solutions considered so far.
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